
Week 4 - Friday



 What did we talk about last time?
 Recursion









 The scope of a name is the part of the program where that name 
is visible

 In Java, scope could get complex
 Local variables, class variables, member variables, 
 Inner classes
 Static vs. non-static
 Visibility issues with public, private, protected, and default

 C is simpler
 Local variables
 Global variables



 Local variables and function arguments are in scope for the 
life of the function call

 They are also called automatic variables
 They come into existence on the stack on a function call
 Then disappear when the function returns

 Local variables can hide global variables



 Variables declared outside of any function are global variables
 They exist for the life of the program
 You can keep data inside global variables between function calls
 They are similar to static members in Java

int value;

void change() {
value = 7;

}

int main() {
value = 5;
change();
printf("Value: %d\n", value);
return 0;

}



 Global variables should rarely be used
 Multiple functions can write to them, allowing inconsistent 

values
 Local variables can hide global variables, leading 

programmers to think they are changing a variable other than 
the one they are

 Code is much easier to understand if it is based on input 
values going into a function and output values getting 
returned



 If there are multiple variables with the same name, the one 
declared in the current block will be used

 If there is no such variable declared in the current block, the 
compiler will look outward one block at a time until it finds it

 Multiple variables can have the same name if they are declared at 
different scope levels
 When an inner variable is used instead of an outer variable with the same 

name, it hides or shadows the outer variable
 Global variables are used only when nothing else matches
 Minimize variable hiding to avoid confusion



 What if you want to use a global 
variable declared in another 
file?

 No problem, just put extern
before the variable declaration 
in your file

 There should only be one true 
declaration, but there can be 
many extern declarations 
referencing it

 Function prototypes are 
implicitly extern

int
count;

extern 
int

count;

extern 
int

count;
extern 
int

count;

file1.c

file2.c

file3.c

program.c



 The static keyword causes confusion in Java because it 
means a couple of different (but related) things

 In C, the static keyword is used differently, but also for two 
confusing things
 Global static declarations
 Local static declarations



 When the staticmodifier is applied to a global variable, that 
variable cannot be accessed in other files

 A global static variable cannot be referred to as an extern in 
some other file

 If multiple files use the same global variable, each variable must 
be static or an extern referring to a single real variable
 Otherwise, the linker will complain that it's got variables with the same 

name
 A static function is one that is also only visible in its own file



 You can also declare a static variable local to a function
 These variables exist for the lifetime of the program, but are 

only visible inside the function
 Some people use these for bizarre tricks in recursive functions
 Try not to use them!
 Like all global variables, they make code harder to reason about
 They are not thread safe



#include <stdio.h>

void unexpected() {
static int count = 0;
count++;
printf("Count: %d", count);

}

int main() {
unexpected(); //Count: 1
unexpected(); //Count: 2
unexpected(); //Count: 3
return 0;

}



 You can also use the register keyword when declaring a local 
variable

 It is a sign to the compiler that you think this variable will be used 
a lot and should be kept in a register

 It's only a suggestion
 You can not use the reference operator (which we haven't talked 

about yet) to retrieve the address of a register variable
 Modern compilers are usually better at register allocation than 

humans

register int value;





 When people say OS, they might mean:
 The whole thing, including GUI managers, utilities, command line 

tools, editors and so on
 Only the central software that manages and allocates resources like 

the CPU, RAM, and devices
 For clarity, people use the term kernel for the second 

meaning
 Modern CPUs often operate in kernel mode and user mode
 Certain kinds of hardware access or other instructions can only be 

executed in kernel mode



 Manages processes
 Creating
 Killing
 Scheduling

 Manages memory
 Usually including extensive virtual memory systems

 File system activities (creation, deletion, reading, writing, etc.)
 Access to hardware devices
 Networking
 Provides a set of system calls that allow processes to use these 

facilities



 A shell is a program written to take commands and execute them
 Sometimes called a command interpreter
 This is the program that manages input and output redirection

 By default, one of the shells is your login shell, the one that 
automatically pops up when you log in (or open a terminal)

 It's a program like any other and people have written different 
ones with features they like:
 sh The original Bourne shell
 csh C shell
 ksh Korn shell
 bash Bourne again shell, the standard shell on Linux



 On Linux, every user has a unique login name (user name) and 
a corresponding numerical ID (UID)

 A file (/etc/passwd) contains the following for all users:
 Group ID: first group of which the user is a member
 Home directory: starting directory when the user logs in
 Login shell

 Groups of users exist for administrative purposes and are 
defined in the /etc/group file



 The superuser account has complete control over everything
 This account is allowed to do anything, access any file
 On Unix systems, the superuser account is usually called 
root

 If you are a system administrator, it is recommended that you 
do not stay logged in as root
 If you ever get a virus, it can destroy everything

 Instead, administrators should log in to a normal account and 
periodically issue commands with elevated permission (often 
by using sudo)





 In Windows, each drive has its own directory hierarchy
 C: etc.

 In Linux, the top of the file system is the root directory /
 Everything (including drives, usually mounted in /mnt) is under the top 

directory 
 /bin is for programs
 /etc is for configuration
 /usr is for user programs
 /boot is for boot information
 /dev is for devices
 /home is for user home directories



 There are regular files in Linux which you can further break down into 
data files and executables (although Linux treats them the same)

 A directory is a special kind of file that lists other files
 Links in Linux are kind of like shortcuts in Windows
 There are hard links and soft links (or symbolic links)

 File names can be up to 255 characters long
 Can contain any ASCII characters except / and the null character \0
 For readability and compatibility, they should only use letters, digits, the 

hyphen, underscore, and dot
 Pathnames describe a location of a file
 They can start with /making them absolute paths
 Or they are relative paths with respect to the current working directory



 Every file has a UID and GID specifying the user who owns the file and the 
group the file belongs to

 For each file, permissions are set that specify:
 Whether the owner can read, write, or execute it
 Whether other members of the group can read, write, or execute it
 Whether anyone else on the system can read, write, or execute it

 The chmod command changes these settings (u is for owner, g is for 
group, and o is everyone else)

 Example that adds the execute (x) permission to others (o) on a file called 
script.sh:

chmod o+x script.sh



 All I/O operations in Linux are treated like file I/O
 Printing to the screen is writing to a special file called stdout
 Reading from the keyboard is reading from a special file called 
stdin

 When we get the basic functions needed to open, read, and 
write files, we'll be able to do almost any kind of I/O



 A process is a program that is currently executing
 In memory, processes have the following segments:
 Text The executable code
 Data Static variables
 Heap Dynamically allocated variables
 Stack Area that grows and shrinks with function calls

 A segmentation fault is when your code tries to access a segment 
it's not supposed to

 A process generally executes with the same privileges as the user 
who started it





 Arrays
 More on makefiles



 Read K&R chapter 5
 Finish Project 2
 Due Monday by midnight!
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