
Week 4 - Friday



 What did we talk about last time?
 Recursion









 The scope of a name is the part of the program where that name 
is visible

 In Java, scope could get complex
 Local variables, class variables, member variables, 
 Inner classes
 Static vs. non-static
 Visibility issues with public, private, protected, and default

 C is simpler
 Local variables
 Global variables



 Local variables and function arguments are in scope for the 
life of the function call

 They are also called automatic variables
 They come into existence on the stack on a function call
 Then disappear when the function returns

 Local variables can hide global variables



 Variables declared outside of any function are global variables
 They exist for the life of the program
 You can keep data inside global variables between function calls
 They are similar to static members in Java

int value;

void change() {
value = 7;

}

int main() {
value = 5;
change();
printf("Value: %d\n", value);
return 0;

}



 Global variables should rarely be used
 Multiple functions can write to them, allowing inconsistent 

values
 Local variables can hide global variables, leading 

programmers to think they are changing a variable other than 
the one they are

 Code is much easier to understand if it is based on input 
values going into a function and output values getting 
returned



 If there are multiple variables with the same name, the one 
declared in the current block will be used

 If there is no such variable declared in the current block, the 
compiler will look outward one block at a time until it finds it

 Multiple variables can have the same name if they are declared at 
different scope levels
 When an inner variable is used instead of an outer variable with the same 

name, it hides or shadows the outer variable
 Global variables are used only when nothing else matches
 Minimize variable hiding to avoid confusion



 What if you want to use a global 
variable declared in another 
file?

 No problem, just put extern
before the variable declaration 
in your file

 There should only be one true 
declaration, but there can be 
many extern declarations 
referencing it

 Function prototypes are 
implicitly extern

int
count;

extern 
int

count;

extern 
int

count;
extern 
int

count;

file1.c

file2.c

file3.c

program.c



 The static keyword causes confusion in Java because it 
means a couple of different (but related) things

 In C, the static keyword is used differently, but also for two 
confusing things
 Global static declarations
 Local static declarations



 When the staticmodifier is applied to a global variable, that 
variable cannot be accessed in other files

 A global static variable cannot be referred to as an extern in 
some other file

 If multiple files use the same global variable, each variable must 
be static or an extern referring to a single real variable
 Otherwise, the linker will complain that it's got variables with the same 

name
 A static function is one that is also only visible in its own file



 You can also declare a static variable local to a function
 These variables exist for the lifetime of the program, but are 

only visible inside the function
 Some people use these for bizarre tricks in recursive functions
 Try not to use them!
 Like all global variables, they make code harder to reason about
 They are not thread safe



#include <stdio.h>

void unexpected() {
static int count = 0;
count++;
printf("Count: %d", count);

}

int main() {
unexpected(); //Count: 1
unexpected(); //Count: 2
unexpected(); //Count: 3
return 0;

}



 You can also use the register keyword when declaring a local 
variable

 It is a sign to the compiler that you think this variable will be used 
a lot and should be kept in a register

 It's only a suggestion
 You can not use the reference operator (which we haven't talked 

about yet) to retrieve the address of a register variable
 Modern compilers are usually better at register allocation than 

humans

register int value;





 When people say OS, they might mean:
 The whole thing, including GUI managers, utilities, command line 

tools, editors and so on
 Only the central software that manages and allocates resources like 

the CPU, RAM, and devices
 For clarity, people use the term kernel for the second 

meaning
 Modern CPUs often operate in kernel mode and user mode
 Certain kinds of hardware access or other instructions can only be 

executed in kernel mode



 Manages processes
 Creating
 Killing
 Scheduling

 Manages memory
 Usually including extensive virtual memory systems

 File system activities (creation, deletion, reading, writing, etc.)
 Access to hardware devices
 Networking
 Provides a set of system calls that allow processes to use these 

facilities



 A shell is a program written to take commands and execute them
 Sometimes called a command interpreter
 This is the program that manages input and output redirection

 By default, one of the shells is your login shell, the one that 
automatically pops up when you log in (or open a terminal)

 It's a program like any other and people have written different 
ones with features they like:
 sh The original Bourne shell
 csh C shell
 ksh Korn shell
 bash Bourne again shell, the standard shell on Linux



 On Linux, every user has a unique login name (user name) and 
a corresponding numerical ID (UID)

 A file (/etc/passwd) contains the following for all users:
 Group ID: first group of which the user is a member
 Home directory: starting directory when the user logs in
 Login shell

 Groups of users exist for administrative purposes and are 
defined in the /etc/group file



 The superuser account has complete control over everything
 This account is allowed to do anything, access any file
 On Unix systems, the superuser account is usually called 
root

 If you are a system administrator, it is recommended that you 
do not stay logged in as root
 If you ever get a virus, it can destroy everything

 Instead, administrators should log in to a normal account and 
periodically issue commands with elevated permission (often 
by using sudo)





 In Windows, each drive has its own directory hierarchy
 C: etc.

 In Linux, the top of the file system is the root directory /
 Everything (including drives, usually mounted in /mnt) is under the top 

directory 
 /bin is for programs
 /etc is for configuration
 /usr is for user programs
 /boot is for boot information
 /dev is for devices
 /home is for user home directories



 There are regular files in Linux which you can further break down into 
data files and executables (although Linux treats them the same)

 A directory is a special kind of file that lists other files
 Links in Linux are kind of like shortcuts in Windows
 There are hard links and soft links (or symbolic links)

 File names can be up to 255 characters long
 Can contain any ASCII characters except / and the null character \0
 For readability and compatibility, they should only use letters, digits, the 

hyphen, underscore, and dot
 Pathnames describe a location of a file
 They can start with /making them absolute paths
 Or they are relative paths with respect to the current working directory



 Every file has a UID and GID specifying the user who owns the file and the 
group the file belongs to

 For each file, permissions are set that specify:
 Whether the owner can read, write, or execute it
 Whether other members of the group can read, write, or execute it
 Whether anyone else on the system can read, write, or execute it

 The chmod command changes these settings (u is for owner, g is for 
group, and o is everyone else)

 Example that adds the execute (x) permission to others (o) on a file called 
script.sh:

chmod o+x script.sh



 All I/O operations in Linux are treated like file I/O
 Printing to the screen is writing to a special file called stdout
 Reading from the keyboard is reading from a special file called 
stdin

 When we get the basic functions needed to open, read, and 
write files, we'll be able to do almost any kind of I/O



 A process is a program that is currently executing
 In memory, processes have the following segments:
 Text The executable code
 Data Static variables
 Heap Dynamically allocated variables
 Stack Area that grows and shrinks with function calls

 A segmentation fault is when your code tries to access a segment 
it's not supposed to

 A process generally executes with the same privileges as the user 
who started it





 Arrays
 More on makefiles



 Read K&R chapter 5
 Finish Project 2
 Due Monday by midnight!


	COMP 2400
	Last time
	Questions?
	Project 2 
	Scope
	Scope
	Local scope
	Global scope
	Use of global variables
	Hiding
	extern declarations
	static declarations
	Global static variables
	Local static variables
	Local static example
	The register modifier
	Systems Programming
	Kernel
	What does the kernel do?
	Shells
	Users and groups
	Superusers
	Slide Number 23
	Single file system
	Files
	File permissions
	File I/O
	Processes
	Upcoming
	Next time…
	Reminders

