
Week 4 - Friday



 What did we talk about last time?
 Recursion









 The scope of a name is the part of the program where that name 
is visible

 In Java, scope could get complex
 Local variables, class variables, member variables, 
 Inner classes
 Static vs. non-static
 Visibility issues with public, private, protected, and default

 C is simpler
 Local variables
 Global variables



 Local variables and function arguments are in scope for the 
life of the function call

 They are also called automatic variables
 They come into existence on the stack on a function call
 Then disappear when the function returns

 Local variables can hide global variables



 Variables declared outside of any function are global variables
 They exist for the life of the program
 You can keep data inside global variables between function calls
 They are similar to static members in Java

int value;

void change() {
value = 7;

}

int main() {
value = 5;
change();
printf("Value: %d\n", value);
return 0;

}



 Global variables should rarely be used
 Multiple functions can write to them, allowing inconsistent 

values
 Local variables can hide global variables, leading 

programmers to think they are changing a variable other than 
the one they are

 Code is much easier to understand if it is based on input 
values going into a function and output values getting 
returned



 If there are multiple variables with the same name, the one 
declared in the current block will be used

 If there is no such variable declared in the current block, the 
compiler will look outward one block at a time until it finds it

 Multiple variables can have the same name if they are declared at 
different scope levels
 When an inner variable is used instead of an outer variable with the same 

name, it hides or shadows the outer variable
 Global variables are used only when nothing else matches
 Minimize variable hiding to avoid confusion



 What if you want to use a global 
variable declared in another 
file?

 No problem, just put extern
before the variable declaration 
in your file

 There should only be one true 
declaration, but there can be 
many extern declarations 
referencing it

 Function prototypes are 
implicitly extern

int
count;

extern 
int

count;

extern 
int

count;
extern 
int

count;

file1.c

file2.c

file3.c

program.c



 The static keyword causes confusion in Java because it 
means a couple of different (but related) things

 In C, the static keyword is used differently, but also for two 
confusing things
 Global static declarations
 Local static declarations



 When the staticmodifier is applied to a global variable, that 
variable cannot be accessed in other files

 A global static variable cannot be referred to as an extern in 
some other file

 If multiple files use the same global variable, each variable must 
be static or an extern referring to a single real variable
 Otherwise, the linker will complain that it's got variables with the same 

name
 A static function is one that is also only visible in its own file



 You can also declare a static variable local to a function
 These variables exist for the lifetime of the program, but are 

only visible inside the function
 Some people use these for bizarre tricks in recursive functions
 Try not to use them!
 Like all global variables, they make code harder to reason about
 They are not thread safe



#include <stdio.h>

void unexpected() {
static int count = 0;
count++;
printf("Count: %d", count);

}

int main() {
unexpected(); //Count: 1
unexpected(); //Count: 2
unexpected(); //Count: 3
return 0;

}



 You can also use the register keyword when declaring a local 
variable

 It is a sign to the compiler that you think this variable will be used 
a lot and should be kept in a register

 It's only a suggestion
 You can not use the reference operator (which we haven't talked 

about yet) to retrieve the address of a register variable
 Modern compilers are usually better at register allocation than 

humans

register int value;





 When people say OS, they might mean:
 The whole thing, including GUI managers, utilities, command line 

tools, editors and so on
 Only the central software that manages and allocates resources like 

the CPU, RAM, and devices
 For clarity, people use the term kernel for the second 

meaning
 Modern CPUs often operate in kernel mode and user mode
 Certain kinds of hardware access or other instructions can only be 

executed in kernel mode



 Manages processes
 Creating
 Killing
 Scheduling

 Manages memory
 Usually including extensive virtual memory systems

 File system activities (creation, deletion, reading, writing, etc.)
 Access to hardware devices
 Networking
 Provides a set of system calls that allow processes to use these 

facilities



 A shell is a program written to take commands and execute them
 Sometimes called a command interpreter
 This is the program that manages input and output redirection

 By default, one of the shells is your login shell, the one that 
automatically pops up when you log in (or open a terminal)

 It's a program like any other and people have written different 
ones with features they like:
 sh The original Bourne shell
 csh C shell
 ksh Korn shell
 bash Bourne again shell, the standard shell on Linux



 On Linux, every user has a unique login name (user name) and 
a corresponding numerical ID (UID)

 A file (/etc/passwd) contains the following for all users:
 Group ID: first group of which the user is a member
 Home directory: starting directory when the user logs in
 Login shell

 Groups of users exist for administrative purposes and are 
defined in the /etc/group file



 The superuser account has complete control over everything
 This account is allowed to do anything, access any file
 On Unix systems, the superuser account is usually called 
root

 If you are a system administrator, it is recommended that you 
do not stay logged in as root
 If you ever get a virus, it can destroy everything

 Instead, administrators should log in to a normal account and 
periodically issue commands with elevated permission (often 
by using sudo)





 In Windows, each drive has its own directory hierarchy
 C: etc.

 In Linux, the top of the file system is the root directory /
 Everything (including drives, usually mounted in /mnt) is under the top 

directory 
 /bin is for programs
 /etc is for configuration
 /usr is for user programs
 /boot is for boot information
 /dev is for devices
 /home is for user home directories



 There are regular files in Linux which you can further break down into 
data files and executables (although Linux treats them the same)

 A directory is a special kind of file that lists other files
 Links in Linux are kind of like shortcuts in Windows
 There are hard links and soft links (or symbolic links)

 File names can be up to 255 characters long
 Can contain any ASCII characters except / and the null character \0
 For readability and compatibility, they should only use letters, digits, the 

hyphen, underscore, and dot
 Pathnames describe a location of a file
 They can start with /making them absolute paths
 Or they are relative paths with respect to the current working directory



 Every file has a UID and GID specifying the user who owns the file and the 
group the file belongs to

 For each file, permissions are set that specify:
 Whether the owner can read, write, or execute it
 Whether other members of the group can read, write, or execute it
 Whether anyone else on the system can read, write, or execute it

 The chmod command changes these settings (u is for owner, g is for 
group, and o is everyone else)

 Example that adds the execute (x) permission to others (o) on a file called 
script.sh:

chmod o+x script.sh



 All I/O operations in Linux are treated like file I/O
 Printing to the screen is writing to a special file called stdout
 Reading from the keyboard is reading from a special file called 
stdin

 When we get the basic functions needed to open, read, and 
write files, we'll be able to do almost any kind of I/O



 A process is a program that is currently executing
 In memory, processes have the following segments:
 Text The executable code
 Data Static variables
 Heap Dynamically allocated variables
 Stack Area that grows and shrinks with function calls

 A segmentation fault is when your code tries to access a segment 
it's not supposed to

 A process generally executes with the same privileges as the user 
who started it





 Arrays
 More on makefiles



 Read K&R chapter 5
 Finish Project 2
 Due Monday by midnight!


	COMP 2400
	Last time
	Questions?
	Project 2 
	Scope
	Scope
	Local scope
	Global scope
	Use of global variables
	Hiding
	extern declarations
	static declarations
	Global static variables
	Local static variables
	Local static example
	The register modifier
	Systems Programming
	Kernel
	What does the kernel do?
	Shells
	Users and groups
	Superusers
	Slide Number 23
	Single file system
	Files
	File permissions
	File I/O
	Processes
	Upcoming
	Next time…
	Reminders

